MICROLITE® Toroidal Cores are manufactured with Metglas® amorphous alloy 2605SA1 ribbon. Their unique combination of high saturation flux density and low loss make them the first choice for all energy storage applications, enabling the designer to achieve both size and system cost reduction.

Applications

- SMPS output inductors
- Flyback transformers
- Differential input inductors
- PVC inductors
- VRM inductors

Benefits

- High saturated flux density
- Significant size reduction
- Low core loss
- Extended bias capability
- Fewer turns due to higher permeability

Physical Properties Metglas MICROLITE XP Cores

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ribbon Thickness (µm)</td>
<td>23</td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>7.18</td>
</tr>
<tr>
<td>Thermal Expansion (ppm/°C)</td>
<td>7.6</td>
</tr>
<tr>
<td>Crystallization Temperature (°C)</td>
<td>508</td>
</tr>
<tr>
<td>Curie Temperature (°C)</td>
<td>399</td>
</tr>
<tr>
<td>Continuous Service Temperature (°C)</td>
<td>150</td>
</tr>
</tbody>
</table>

Magnetic Properties Metglas MICROLITE XP Cores

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturation Flux Density (T)</td>
<td>1.56</td>
</tr>
<tr>
<td>Permeability (depending on core size)</td>
<td>245/270</td>
</tr>
</tbody>
</table>
Percent Permeability vs. DC Bias @ 25°C

MICROLITE $\mu = 245$

$H = \frac{0.4 \| N I}{\delta_M}$ (Oe)

where $N =$ number of turns
$I =$ dc current (amps)
$\delta_M =$ mean magnetic path length (cm)

% nominal permeability at bias

$H (Oe)$

MICROLITE $\mu = 270$

$H = \frac{0.4 \| N I}{\delta_M}$ (Oe)

where $N =$ number of turns
$I =$ dc current (amps)
$\delta_M =$ mean magnetic path length (cm)

% nominal permeability at bias

$H (Oe)$
Core Loss vs. Flux Density @ 25°C

MICROLITE $\mu = 245$

Loss in W/kg

$= 275 fB^4 + 0.114 f^2 B^2$

where B is in Tesla

f is in KHz

MICROLITE $\mu = 270$

Loss in W/kg

$= 316 fB^4 + 0.114 f^2 B^2$

where B is in Tesla

f is in KHz
Temperature Dependence of Inductance

MICROLITE® = 245

Permeability vs. Frequency

Frequency [kHz]
MICROLITE® High Frequency Distributed Gap Inductor Cores

Ordering Information

Example:

<table>
<thead>
<tr>
<th>MP1710XDGC</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>METGLAS Products</th>
<th>Cylindrical Diameter (mm)</th>
<th>Distributed Gap Core Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MICROLITE® Toroidal Cores

Core Dimensions

<table>
<thead>
<tr>
<th>Core No.</th>
<th>O.D. Max (mm)</th>
<th>O.D. Min (mm)</th>
<th>Ht. Max (mm)</th>
<th>Im (cm)</th>
<th>(A_i) (cm²)</th>
<th>(W_i) (cm³)</th>
<th>(W_{iA}) (cm³)</th>
<th>Initial Perm</th>
<th>(A_i^*) (nH/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP105MDGC</td>
<td>11.32</td>
<td>4.77</td>
<td>5.12</td>
<td>2.90</td>
<td>0.10</td>
<td>0.23</td>
<td>0.016</td>
<td>270</td>
<td>141.1</td>
</tr>
<tr>
<td>MP1105MDGC</td>
<td>12.19</td>
<td>6.00</td>
<td>5.29</td>
<td>2.80</td>
<td>0.10</td>
<td>0.27</td>
<td>0.028</td>
<td>270</td>
<td>116.5</td>
</tr>
<tr>
<td>MP1205MDGC</td>
<td>13.86</td>
<td>7.65</td>
<td>6.29</td>
<td>3.22</td>
<td>0.09</td>
<td>0.30</td>
<td>0.041</td>
<td>270</td>
<td>97.7</td>
</tr>
<tr>
<td>MP1306MDGC</td>
<td>14.67</td>
<td>8.38</td>
<td>7.07</td>
<td>3.37</td>
<td>0.15</td>
<td>0.51</td>
<td>0.066</td>
<td>245</td>
<td>137.8</td>
</tr>
<tr>
<td>MP1503MDGC</td>
<td>17.03</td>
<td>8.99</td>
<td>7.50</td>
<td>3.89</td>
<td>0.09</td>
<td>0.34</td>
<td>0.053</td>
<td>270</td>
<td>73.9</td>
</tr>
<tr>
<td>MP1710MDGC</td>
<td>18.68</td>
<td>12.16</td>
<td>11.01</td>
<td>4.74</td>
<td>0.20</td>
<td>0.94</td>
<td>0.020</td>
<td>245</td>
<td>128.5</td>
</tr>
<tr>
<td>MP2010MDGC</td>
<td>21.25</td>
<td>12.16</td>
<td>11.01</td>
<td>5.13</td>
<td>0.30</td>
<td>1.54</td>
<td>0.034</td>
<td>245</td>
<td>180.1</td>
</tr>
<tr>
<td>MP2310MDGC</td>
<td>24.28</td>
<td>12.16</td>
<td>11.01</td>
<td>5.60</td>
<td>0.43</td>
<td>2.30</td>
<td>0.042</td>
<td>245</td>
<td>233.7</td>
</tr>
<tr>
<td>MP2510MDGC</td>
<td>26.64</td>
<td>19.51</td>
<td>11.05</td>
<td>7.01</td>
<td>0.27</td>
<td>1.09</td>
<td>0.072</td>
<td>245</td>
<td>118.4</td>
</tr>
<tr>
<td>MP2910MDGC</td>
<td>29.92</td>
<td>19.51</td>
<td>11.05</td>
<td>6.61</td>
<td>0.37</td>
<td>2.48</td>
<td>0.072</td>
<td>245</td>
<td>174.6</td>
</tr>
<tr>
<td>MP3210MDGC</td>
<td>32.57</td>
<td>21.69</td>
<td>11.05</td>
<td>5.84</td>
<td>0.41</td>
<td>3.52</td>
<td>0.059</td>
<td>245</td>
<td>148.3</td>
</tr>
<tr>
<td>MP3310MDGC</td>
<td>34.06</td>
<td>14.70</td>
<td>11.05</td>
<td>7.43</td>
<td>0.71</td>
<td>5.34</td>
<td>1.71</td>
<td>245</td>
<td>292.9</td>
</tr>
<tr>
<td>MP3505MDGC</td>
<td>36.40</td>
<td>21.69</td>
<td>6.29</td>
<td>8.97</td>
<td>0.26</td>
<td>2.35</td>
<td>0.699</td>
<td>245</td>
<td>90.0</td>
</tr>
<tr>
<td>MP3510MDGC</td>
<td>36.52</td>
<td>19.51</td>
<td>11.05</td>
<td>8.48</td>
<td>0.66</td>
<td>5.58</td>
<td>2.93</td>
<td>245</td>
<td>236.9</td>
</tr>
<tr>
<td>MP3710MDGC</td>
<td>38.50</td>
<td>21.69</td>
<td>11.05</td>
<td>9.32</td>
<td>0.61</td>
<td>5.66</td>
<td>3.93</td>
<td>245</td>
<td>201.9</td>
</tr>
<tr>
<td>MP4010MDGC</td>
<td>41.58</td>
<td>21.69</td>
<td>11.05</td>
<td>9.76</td>
<td>0.73</td>
<td>7.15</td>
<td>3.69</td>
<td>245</td>
<td>231.1</td>
</tr>
<tr>
<td>MP4510MDGC</td>
<td>46.73</td>
<td>21.65</td>
<td>11.05</td>
<td>10.55</td>
<td>0.94</td>
<td>9.91</td>
<td>3.47</td>
<td>245</td>
<td>274.4</td>
</tr>
<tr>
<td>MP7050MDGC</td>
<td>13.23</td>
<td>7.46</td>
<td>6.12</td>
<td>3.14</td>
<td>0.08</td>
<td>0.25</td>
<td>0.044</td>
<td>245</td>
<td>78.2</td>
</tr>
<tr>
<td>MP7090MDGC</td>
<td>46.58</td>
<td>23.55</td>
<td>18.72</td>
<td>11.65</td>
<td>0.94</td>
<td>10.92</td>
<td>6.56</td>
<td>245</td>
<td>247.7</td>
</tr>
<tr>
<td>MP7109MDGC</td>
<td>57.31</td>
<td>37.44</td>
<td>15.32</td>
<td>14.64</td>
<td>1.03</td>
<td>15.13</td>
<td>11.01</td>
<td>245</td>
<td>217.4</td>
</tr>
<tr>
<td>MP7120MDGC</td>
<td>17.31</td>
<td>10.46</td>
<td>7.87</td>
<td>4.24</td>
<td>0.14</td>
<td>0.59</td>
<td>0.086</td>
<td>245</td>
<td>100.3</td>
</tr>
<tr>
<td>MP7159MDGC</td>
<td>54.32</td>
<td>26.97</td>
<td>16.52</td>
<td>12.49</td>
<td>1.60</td>
<td>19.98</td>
<td>5.71</td>
<td>245</td>
<td>394.1</td>
</tr>
<tr>
<td>MP7206MDGC</td>
<td>21.41</td>
<td>13.46</td>
<td>7.67</td>
<td>5.85</td>
<td>0.17</td>
<td>0.69</td>
<td>1.42</td>
<td>245</td>
<td>96.2</td>
</tr>
<tr>
<td>MP7254MDGC</td>
<td>35.38</td>
<td>24.66</td>
<td>15.65</td>
<td>5.91</td>
<td>0.75</td>
<td>7.46</td>
<td>4.65</td>
<td>245</td>
<td>234.1</td>
</tr>
<tr>
<td>MP7310MDGC</td>
<td>23.49</td>
<td>13.46</td>
<td>7.87</td>
<td>5.66</td>
<td>0.22</td>
<td>1.23</td>
<td>1.42</td>
<td>245</td>
<td>120.7</td>
</tr>
<tr>
<td>MP7324MDGC</td>
<td>36.59</td>
<td>23.01</td>
<td>11.05</td>
<td>3.24</td>
<td>0.49</td>
<td>4.51</td>
<td>4.16</td>
<td>245</td>
<td>162.3</td>
</tr>
<tr>
<td>MP7350MDGC</td>
<td>23.53</td>
<td>14.22</td>
<td>9.65</td>
<td>5.79</td>
<td>0.27</td>
<td>1.55</td>
<td>1.59</td>
<td>245</td>
<td>142.3</td>
</tr>
<tr>
<td>MP7380MDGC</td>
<td>18.30</td>
<td>10.23</td>
<td>7.97</td>
<td>4.35</td>
<td>0.17</td>
<td>0.74</td>
<td>0.62</td>
<td>245</td>
<td>120.6</td>
</tr>
<tr>
<td>MP7436MDGC</td>
<td>46.61</td>
<td>23.22</td>
<td>16.99</td>
<td>11.05</td>
<td>1.43</td>
<td>15.80</td>
<td>4.59</td>
<td>245</td>
<td>336.4</td>
</tr>
<tr>
<td>MP7548MDGC</td>
<td>33.25</td>
<td>19.73</td>
<td>11.05</td>
<td>8.15</td>
<td>0.47</td>
<td>3.82</td>
<td>3.06</td>
<td>245</td>
<td>177.4</td>
</tr>
<tr>
<td>MP7585MDGC</td>
<td>34.87</td>
<td>23.95</td>
<td>9.91</td>
<td>9.08</td>
<td>0.32</td>
<td>2.93</td>
<td>4.50</td>
<td>245</td>
<td>109.3</td>
</tr>
<tr>
<td>MP7715MDGC</td>
<td>51.53</td>
<td>32.46</td>
<td>13.89</td>
<td>12.97</td>
<td>0.89</td>
<td>11.57</td>
<td>8.27</td>
<td>245</td>
<td>211.7</td>
</tr>
<tr>
<td>MP7930MDGC</td>
<td>27.18</td>
<td>13.46</td>
<td>11.05</td>
<td>6.21</td>
<td>0.48</td>
<td>2.97</td>
<td>1.42</td>
<td>245</td>
<td>237.3</td>
</tr>
</tbody>
</table>
MICROLITE® Toroidal Cores

Core Dimension
- **Core No.**
- **O.D. Max (mm)**
- **I.D. Min (mm)**
- **Ht. Max (mm)**
- **Lm (cm)**
- **A_c (cm²)**
- **Vol (cm³)**
- **W₂ (cm²)**
- **W₂A_c (cm⁴)**
- **Initial Perm**
- **A_L (nH/N²)**

<table>
<thead>
<tr>
<th>Core No.</th>
<th>O.D. Max (mm)</th>
<th>I.D. Min (mm)</th>
<th>Ht. Max (mm)</th>
<th>Lm (cm)</th>
<th>A<sub>c</sub> (cm<sup>2</sup>)</th>
<th>Vol (cm<sup>3</sup>)</th>
<th>W<sub>2</sub> (cm<sup>2</sup>)</th>
<th>W<sub>2</sub>A<sub>c</sub> (cm<sup>4</sup>)</th>
<th>Initial Perm</th>
<th>A<sub>L</sub> (nH/N<sup>2</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP1306LDGC</td>
<td>15.80</td>
<td>6.17</td>
<td>8.13</td>
<td>3.37</td>
<td>0.15</td>
<td>0.51</td>
<td>0.30</td>
<td>0.045</td>
<td>245</td>
<td>137.8</td>
</tr>
<tr>
<td>MP1306PDGC</td>
<td>15.80</td>
<td>6.17</td>
<td>8.13</td>
<td>3.37</td>
<td>0.15</td>
<td>0.51</td>
<td>0.30</td>
<td>0.045</td>
<td>245</td>
<td>137.8</td>
</tr>
<tr>
<td>MP1306VDGC</td>
<td>15.80</td>
<td>6.17</td>
<td>8.13</td>
<td>3.37</td>
<td>0.15</td>
<td>0.51</td>
<td>0.30</td>
<td>0.045</td>
<td>245</td>
<td>137.8</td>
</tr>
<tr>
<td>MP1603LDGC</td>
<td>19.24</td>
<td>7.87</td>
<td>4.70</td>
<td>3.98</td>
<td>0.09</td>
<td>0.34</td>
<td>0.49</td>
<td>0.042</td>
<td>270</td>
<td>73.6</td>
</tr>
<tr>
<td>MP1603PDGC</td>
<td>19.24</td>
<td>7.87</td>
<td>4.70</td>
<td>3.98</td>
<td>0.09</td>
<td>0.34</td>
<td>0.49</td>
<td>0.042</td>
<td>270</td>
<td>73.6</td>
</tr>
<tr>
<td>MP1603VDGC</td>
<td>19.24</td>
<td>7.87</td>
<td>4.70</td>
<td>3.98</td>
<td>0.09</td>
<td>0.34</td>
<td>0.49</td>
<td>0.042</td>
<td>270</td>
<td>73.6</td>
</tr>
<tr>
<td>MP1710LDGC</td>
<td>20.22</td>
<td>10.87</td>
<td>11.43</td>
<td>4.74</td>
<td>0.20</td>
<td>0.34</td>
<td>0.93</td>
<td>0.184</td>
<td>245</td>
<td>128.5</td>
</tr>
<tr>
<td>MP1710PDGC</td>
<td>20.22</td>
<td>10.87</td>
<td>11.43</td>
<td>4.74</td>
<td>0.20</td>
<td>0.34</td>
<td>0.93</td>
<td>0.184</td>
<td>245</td>
<td>128.5</td>
</tr>
<tr>
<td>MP1710VDGC</td>
<td>20.22</td>
<td>10.87</td>
<td>11.43</td>
<td>4.74</td>
<td>0.20</td>
<td>0.34</td>
<td>0.93</td>
<td>0.184</td>
<td>245</td>
<td>128.5</td>
</tr>
<tr>
<td>MP2010LDGC</td>
<td>22.78</td>
<td>10.87</td>
<td>11.43</td>
<td>5.13</td>
<td>0.30</td>
<td>1.54</td>
<td>0.93</td>
<td>0.278</td>
<td>245</td>
<td>180.1</td>
</tr>
<tr>
<td>MP2010PDGC</td>
<td>22.78</td>
<td>10.87</td>
<td>11.43</td>
<td>5.13</td>
<td>0.30</td>
<td>1.54</td>
<td>0.93</td>
<td>0.278</td>
<td>245</td>
<td>180.1</td>
</tr>
<tr>
<td>MP2010VDGC</td>
<td>22.78</td>
<td>10.87</td>
<td>11.43</td>
<td>5.13</td>
<td>0.30</td>
<td>1.54</td>
<td>0.93</td>
<td>0.278</td>
<td>245</td>
<td>180.1</td>
</tr>
<tr>
<td>MP2310LDGC</td>
<td>25.91</td>
<td>10.80</td>
<td>11.48</td>
<td>5.60</td>
<td>0.43</td>
<td>2.38</td>
<td>0.92</td>
<td>0.369</td>
<td>245</td>
<td>232.7</td>
</tr>
<tr>
<td>MP2310PDGC</td>
<td>25.91</td>
<td>10.80</td>
<td>11.48</td>
<td>5.60</td>
<td>0.43</td>
<td>2.38</td>
<td>0.92</td>
<td>0.369</td>
<td>245</td>
<td>232.7</td>
</tr>
<tr>
<td>MP2310VDGC</td>
<td>25.91</td>
<td>10.80</td>
<td>11.48</td>
<td>5.60</td>
<td>0.43</td>
<td>2.38</td>
<td>0.92</td>
<td>0.369</td>
<td>245</td>
<td>232.7</td>
</tr>
<tr>
<td>MP2510LDGC</td>
<td>27.79</td>
<td>17.27</td>
<td>11.48</td>
<td>7.01</td>
<td>0.27</td>
<td>1.89</td>
<td>2.34</td>
<td>0.631</td>
<td>245</td>
<td>118.4</td>
</tr>
<tr>
<td>MP2510PDGC</td>
<td>27.79</td>
<td>17.27</td>
<td>11.48</td>
<td>7.01</td>
<td>0.27</td>
<td>1.89</td>
<td>2.34</td>
<td>0.631</td>
<td>245</td>
<td>118.4</td>
</tr>
<tr>
<td>MP2510VDGC</td>
<td>27.79</td>
<td>17.27</td>
<td>11.48</td>
<td>7.01</td>
<td>0.27</td>
<td>1.89</td>
<td>2.34</td>
<td>0.631</td>
<td>245</td>
<td>118.4</td>
</tr>
<tr>
<td>MP2610LDGC</td>
<td>28.32</td>
<td>14.15</td>
<td>11.48</td>
<td>6.61</td>
<td>0.37</td>
<td>2.48</td>
<td>1.57</td>
<td>0.569</td>
<td>245</td>
<td>174.6</td>
</tr>
<tr>
<td>MP2610PDGC</td>
<td>28.32</td>
<td>14.15</td>
<td>11.48</td>
<td>6.61</td>
<td>0.37</td>
<td>2.48</td>
<td>1.57</td>
<td>0.569</td>
<td>245</td>
<td>174.6</td>
</tr>
<tr>
<td>MP2610VDGC</td>
<td>28.32</td>
<td>14.15</td>
<td>11.48</td>
<td>6.61</td>
<td>0.37</td>
<td>2.48</td>
<td>1.57</td>
<td>0.569</td>
<td>245</td>
<td>174.6</td>
</tr>
<tr>
<td>MP3210LDGC</td>
<td>34.95</td>
<td>19.86</td>
<td>11.48</td>
<td>8.54</td>
<td>0.41</td>
<td>3.52</td>
<td>3.10</td>
<td>1.275</td>
<td>245</td>
<td>146.3</td>
</tr>
<tr>
<td>MP3210PDGC</td>
<td>34.95</td>
<td>19.86</td>
<td>11.48</td>
<td>8.54</td>
<td>0.41</td>
<td>3.52</td>
<td>3.10</td>
<td>1.275</td>
<td>245</td>
<td>146.3</td>
</tr>
<tr>
<td>MP3210VDGC</td>
<td>34.95</td>
<td>19.86</td>
<td>11.48</td>
<td>8.54</td>
<td>0.41</td>
<td>3.52</td>
<td>3.10</td>
<td>1.275</td>
<td>245</td>
<td>146.3</td>
</tr>
<tr>
<td>MP3510LDGC</td>
<td>35.07</td>
<td>12.95</td>
<td>11.48</td>
<td>7.49</td>
<td>0.71</td>
<td>5.54</td>
<td>1.32</td>
<td>0.939</td>
<td>245</td>
<td>292.8</td>
</tr>
<tr>
<td>MP3510PDGC</td>
<td>35.07</td>
<td>12.95</td>
<td>11.48</td>
<td>7.49</td>
<td>0.71</td>
<td>5.54</td>
<td>1.32</td>
<td>0.939</td>
<td>245</td>
<td>292.8</td>
</tr>
<tr>
<td>MP3510VDGC</td>
<td>35.07</td>
<td>12.95</td>
<td>11.48</td>
<td>7.49</td>
<td>0.71</td>
<td>5.54</td>
<td>1.32</td>
<td>0.939</td>
<td>245</td>
<td>292.8</td>
</tr>
<tr>
<td>MP3810LDGC</td>
<td>38.10</td>
<td>16.69</td>
<td>11.48</td>
<td>8.48</td>
<td>0.85</td>
<td>5.58</td>
<td>2.19</td>
<td>1.439</td>
<td>245</td>
<td>238.6</td>
</tr>
<tr>
<td>MP3810PDGC</td>
<td>38.10</td>
<td>16.69</td>
<td>11.48</td>
<td>8.48</td>
<td>0.85</td>
<td>5.58</td>
<td>2.19</td>
<td>1.439</td>
<td>245</td>
<td>238.6</td>
</tr>
<tr>
<td>MP3810VDGC</td>
<td>38.10</td>
<td>16.69</td>
<td>11.48</td>
<td>8.48</td>
<td>0.85</td>
<td>5.58</td>
<td>2.19</td>
<td>1.439</td>
<td>245</td>
<td>238.6</td>
</tr>
<tr>
<td>MP4010LDGC</td>
<td>40.03</td>
<td>19.86</td>
<td>11.48</td>
<td>9.76</td>
<td>0.73</td>
<td>7.15</td>
<td>3.10</td>
<td>2.270</td>
<td>245</td>
<td>231.1</td>
</tr>
<tr>
<td>MP4010PDGC</td>
<td>40.03</td>
<td>19.86</td>
<td>11.48</td>
<td>9.76</td>
<td>0.73</td>
<td>7.15</td>
<td>3.10</td>
<td>2.270</td>
<td>245</td>
<td>231.1</td>
</tr>
<tr>
<td>MP4010VDGC</td>
<td>40.10</td>
<td>19.86</td>
<td>11.48</td>
<td>10.55</td>
<td>0.94</td>
<td>9.91</td>
<td>3.10</td>
<td>2.912</td>
<td>245</td>
<td>274.4</td>
</tr>
<tr>
<td>MP4510LDGC</td>
<td>45.13</td>
<td>19.86</td>
<td>11.48</td>
<td>10.55</td>
<td>0.94</td>
<td>9.91</td>
<td>3.10</td>
<td>2.912</td>
<td>245</td>
<td>274.4</td>
</tr>
<tr>
<td>MP4510PDGC</td>
<td>45.13</td>
<td>19.86</td>
<td>11.48</td>
<td>10.55</td>
<td>0.94</td>
<td>9.91</td>
<td>3.10</td>
<td>2.912</td>
<td>245</td>
<td>274.4</td>
</tr>
</tbody>
</table>